
从测试数据中不难看出,锂离子电池如果超出自身正常工作温度,便有可能出现化学层面的失控,这不仅会导致电池的循环寿命和日历寿命的衰减,甚至可能引起更严重的安全事故。

对于储能系统而言,将电芯始终保持在合适的温度区间内极为重要,有效的温控系统不仅能够保证储能电站的安全性以及使用寿命,也能在一定程度上提升性能与效率。
在这一过程中,我们需要着重解决两个问题。
01 控制单体电池的表面温湿度
保持最佳工作温湿度是进行温控的基础,一班要求点心工作温度为+15℃~+35℃;相对湿度在5%~95%之间且无冷凝水
02 避免电池系统中产生局部热点
电池间的温差不超过3℃,避免产生局部热点。
目前,储能温控系统的控温方式逐渐转向液冷。

载冷剂将电池冷板吸收的热量通过蒸发器释放后,利用水泵运行产生的动力,重新进入冷板中吸收设备产生热量;
机组在运行中,蒸发器(板式换热器)从载冷剂循环系统中吸取的热量通过制冷剂的蒸发吸热,制冷剂经压缩机压缩后进入冷凝器,并通过制冷剂的冷凝将热量释放到周围空气环境中。
冷凝后的制冷剂通过膨胀阀返回到蒸发器;然后再被蒸发,如此循环往复。


场景:集装箱储能
电池工况:0.5C;1C
冷却形式:底部液冷
冲压钎焊下底板
场景:集装箱储能
电池工况:0.5C;1C
冷却形式:底部液冷
铝挤型材下箱体
场景:集装箱储能
电池工况:0.5C
冷却形式:底部液冷
可以看到目前主流的液冷板技术方向为钎焊和型材,那么这两种不同的技术,在实际应用中是否存在差别,两者在实际使用中的该做怎样的选择呢?
在电池热功率1716W@1C,水流量:10L/min,进水温度18℃,冷却液:50%乙二醇水溶液的测试条件下。钎焊冷板与型材冷板的温度差如下:
类型 | 最高温度 | 电池温差 |
钎焊冷板 | 57.42℃ | 2.74℃ |
型材冷板 | 60.01℃ | 5.86℃ |
电池冷板力学仿真
底冷方案解决了电池包中不同电池之间的温度差异,但由于电池自身导热系数低的问题,导致电池的顶部与底部的温差过高,达到35℃。
侧冷方案
侧冷方案不仅可以解决了电池包中不同电池之间的温度差异,还可以解决电池顶部与底部的温差过高的问题。