热管理工具软件

热测试(四)——结构函数的实际应用 (2)

结构函数清晰的解析了器件的内部结构,无论这个器件是新器件还是旧器件,好器件还是坏器件(还能通电),所以可以用来做封装内部的故障分析。

结构函数清晰的解析了器件的内部结构,无论这个器件是新器件还是旧器件,好器件还是坏器件(还能通电),所以可以用来做封装内部的故障分析。

热测试(四)——结构函数的实际应用 (2)

图一 热故障解析:封装内部

 

假定同一批器件,良品的结构函数如左图。而右图是不良品的结构函数。通过两个结构函数的对比,可以清晰的看出,在Die,base 和grease段的结构函数都基本一样,唯独表征Die Attach那一段的结构函数,不良品要比良品长,其意义就是不良品的热阻要比良品的热阻大。物理上,由于不良品在Die Attach一层产生了故障,如果用超声波探伤仪可以知道探测到里面的剥离,用X射线扫描可以发现里面有气泡,但是这两种探测方式都无法把故障的地方锁定在Die Attach区域,如果想知道准确的故障位置,只能打开器件。

而结构函数分析法,并不需要打开器件,只要通过一次简单的测定,就可以知道故障发生的位置,器件的降级程度(还能不能继续使用)等等。

这项技术在各个部门的用法也不一样,物品部全检和抽检相结合,可以用来评价供应商器件的质量,质量部对产品进行质量检测时,可以根据器件的热阻大小,对产品进行分类。

产品数量很大,单只测试效率太低,需要对测试设备做一些定制,比如多通道同时测试,包括设计特定的夹具,便于整个测试过程的操作。同时测试的数据分析软件也能一体化,并留有相应的接口,使用者可以根据自己的测试要求,定制测试流程,批量测试自己的产品。

 

工艺设计和研发部对结构函数的使用又有不同,下面我们用一个例子来说明。

热测试(四)——结构函数的实际应用 (2)

图二 结合部的热测试与分析

 

上图是一个装配图,芯片(MOSFET)同螺栓固定装配在热沉上,装配方式有四种:

在芯片和热沉之间涂上Grease;

直接把芯片放在热沉上;

在芯片和热沉之间添加一个绝缘层,并用较大的预紧力固定;

同样的芯片,热沉和绝缘层,只是减小了固定力矩。

这四种方式会得到四种不同的结构函数,通过对这些结构函数的比较,我们发现:

芯片部分的结构函数曲线依然是重复性非常好;

最小θJA(结到环境的热阻)是使用Grease,大概在6K/W左右;

不使用Grease 是θJA增加了0.92K/W;

相对于不使用Grease这种装配形式,增加绝缘层,用强力矩固定,又使θJA增加了1.13K/W,而力矩的改变导致θJA的变化是0.03K/W。

一定程度上说,热设计的目标就是尽可能的减小θJA,以上的测试结果,我们可以看出:

不同的装配工艺会给θJA带来很大的变化,如果条件允许的话,尽量选择热阻较小的装配工艺;

芯片的热阻所占比重并不是很高,而选择热阻较低的芯片,会导致成本大幅上升,总体热阻减低的情况并不十分理想,不如在散热路径上多想想办法;

力矩的变化,对热阻的影响不是很大,如果该电子系统是在振动比较大环境下使用,我们可以选择较小的力矩来提升系统的柔性。

以上是测试结果为产品设计提供的参考思路,而在设计的细节上,我们同样可以使用结构函数。

热测试(四)——结构函数的实际应用 (2)

图三 不同Grease对系统热阻的影响

 

同样是涂上Grease,我们同时选用八种不同热导率的Grease,在同样预紧力的情况下,做相应的结构函数测试。

按照热阻大小排列,排除不涂Grease(Dry)的不算,测试结果显示,02样品(热阻第二大)的热导率是1.55 K/W,03和04几乎贴在一起,但是他们的热导率分别是0.77 K/W和0.6 K/W,热阻的大小顺序并没有按照热导率从低到高排列。

原因是为了提高02样品的热导率,估计是添加了类似于陶瓷粉末这样的微小颗粒而使得该Grease的粘性增加,在同样预紧力的情况下,它的厚度远远大于03和04号样品。

Grease的标准厚度大概是150微米以下,我也见过可以压到40微米左右的Grease,这种界面材料使用在表面相对光洁度比较高,比较平整的结合部,虽然热导率不是很高,依然可以起到很好的效果。

可见我们在选择Grease型号的时候,不能仅仅只考虑它的热导率。有条件的情况下,还是要对现有的工艺做实际的结构函数测试,避免发生不良设计甚至是芯片“炸机”这样的危险。

热测试(四)——结构函数的实际应用 (2)

图四 散热部件的测试与参数评价

图四的上半部分是一个芯片散热的示意图,为了给芯片散热,将芯片和一热沉连接在一起,加一个风扇是为了提高热沉的散热能力,芯片的额定功率是已知的,现在需要对风扇和电机进行合理的选型。
热设计的本质目的就是降低θJA,从右图可以看出,θJA 和转速有一定的关系,风扇转速 S1>S2>S3, θJA1<θJA2<θJA3,但随着风速的增大其边际效益递减。电机的功率肯定不是越大越好,但是什么样的转速时合适的,如果凭经验设计,当然是要留一定的余量,为了保证安全,这个冗余量不敢做得很小,只能选功率相对较高的电机,但随着边界效益递减,很难在成本和质量之间做一个平衡,而且还有一种可能就是,即使风扇转速做到最大,都不一定能满足系统散热要求,那就要改变热沉的设计或者在散热路径上做文章,整个过程究竟要做多少次试错,最后的设计,从成本,质量,稳定性各种指标上性能是否匹配,这些都是非常头疼的问题。

其实问题远没有那么复杂,给定一个设计,测出θJA,根据环境温度,直接可以推算出结温,这样就非常清楚现有设计是否能满足要求,如果能借助于Validation 的仿真流程,还可以进行多参数优化,这些参数包括,风扇的转速,热沉的参数如齿条数目,间距,材质等等,通过软件做实验,可以最短的时间,找出最合理的方案。

下半部分是一个微观散热器的示意图,表征散热介质的流速和θJA 直接的关系,原理其实也类似,用这种方式可以评价不同的流速,不同的介质,不同的散热流道设计,甚至不同的散热方式(气体冷却,液体冷却)等等各种散热系统精确的散热能力,设计手段是实验和仿真相结合,由于仿真的流程是标准化的,Validation 的,并不需要大量的实验,设计成本最低,设计速度最快。

 

相关文章:

热测试(一)——ETM法测量结温

热测试(二)——瞬态热测试与结构函数

热测试(三)——结构函数的实际应用 (1)

下载权限
查看
  • $
    免费下载
    评论并刷新后下载
    登录后下载
  • {{attr.name}}:
您当前的等级为
登录后免费下载登录 小黑屋反思中,不准下载! 评论后刷新页面下载评论 支付以后下载 请先登录 您今天的下载次数(次)用完了,请明天再来 支付积分以后下载立即支付 支付以后下载立即支付 您当前的用户组不允许下载升级会员
您已获得下载权限 您可以每天下载资源次,今日剩余
版权声明:部分内容由互联网用户自行发布,该文仅代表作者本人观点。如有不适或侵权,请联系我们进行反馈,一经查实本站将予以删除。

给TA打赏
共{{data.count}}人
人已打赏
热管理技术

热测试(三)——结构函数的实际应用 (1)

2022-3-6 22:13:51

热管理技术

电子系统热设计热分析实验教学改革思路与探索

2022-3-8 8:41:37

0 条回复 A文章作者 M管理员
    暂无讨论,说说你的看法吧
个人中心
购物车
优惠劵
今日签到
有新私信 私信列表
搜索